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Traveling Turing patterns in nonlinear neural fields
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Traveling pattern solutions to a nonlinear neural field are studied numerically and analytically. These occur
in a homogeneous field without oscillatory or excitability properties, in a region of classical Turing instability.
Our observations from one-dimensional and two-dimensional numerical experiments are reported and used to
derive general existence conditions on both field structure and parameters, to support traveling patterns. These
conditions are used to predict and observe novel traveling patterns catalyzed by the “zero” mode. A local
bifurcation analysis is presented for traveling rolls in a field with pure-cubic nonlinearity. Our results are then
placed in a broader context of nonlinear fields, and the biological significance is discussed.
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I. INTRODUCTION cation parameter. We shall take=0 throughout this paper
corresponding to a pure cubi¢pure-C") field nonlinearity,

Traveling waves and traveling wave fronts are well-and «=1. While a sigmoidf(u) is commonly used in neu-
known solutions to nonlinear spatially distributed systemsyophysiology, the above polynomial allows direct specifica-
such as reaction-diffusion systems and neural nets. Waveion of nonlinear effects.
train solutions appear in systems with oscillating kinetics via The operator represents spatial convolution with kernel
Hopf bifurcation[1], and excitable media display solitary or A \hich determines the input connections to each neuron.
trigger waveg2]. Even standing patterns in classical patter-pgre these consist exclusively of recurrent feedback connec-

forming experiments have been observed to go traveling at f,ng from nearby neuron outputs. We assume there is some
secondary bifurcation. Rayleigh-Bard convectior{3], di- form of lateral inhibition; nearby neurons are excitory and

rectional solidification[4], the Faraday instability5], and : Copa ;
Couette flow experimentés] have all shown this effect. A %l;'hatnt neurons are inhibitory in the feedback to each neuron

model for this drift bifurcation is presented [7]. In this .
paper we report our observations of traveling pattern solu- The spegtrank of the convolution kerngA then.pealfs
round a principal spatial frequenky where it is positive in

tions in numerical experiments with scalar nonlinear neuraf*

fields where the nonlinearity is purely cubic. Traveling pat-S'9M .and faII; off for harmonics of this frequency. This is the
terns appear spontaneously in a region of Turing instabilitf'?ss_'cal recipe for production of patterns dominated by the
from a variety of initial conditions(The Turing instability ~Principal spatial frequency, as moves the system through
usua”y refers to Spontaneous Symmetry breaking in reactiorf:riticality. Various kerneldA are used in our eXperimentS, all
diffusion systems to nonequilibrium structures with wave-With neurophysiological significance, such as the “difference
length not directly linked to the field size. The great similar-of Gaussian” function(DOG) [8], the Gaussian derivative
ity between the description of reaction diffusion systems and9], or linear combinations of Gaussians.
our neural fields in the Fourier domain leads us to the more Finally, the term— xu(x,t) represents the effects of the
general application of the name Turihg. passive membrane input to each neuron. This field equation
We present a straightforward local bifurcation analysis ofis well known in neural network literature, and was origi-
a one-dimensionallD) pattern consisting of principal and nally derived in the context of randomly connected neurons
third harmonic modes, and obtain constraints on the neurdl]. It is interesting that a random net is able to support
field structure and parameters to support these patterngaveling patterns; this is discussed in Sec. IV.
These parameter constraints are then generalized to 2D pat- A typical example of a traveling pattern solution to Eq.
terns consisting of an arbitrary number of modes. To illus(1) observed in our numerical experiments is seen in Fig. 1.
trate the application of these constraints, we predict and disFhe initial pattern comprised a small number of rolls of ran-

cover a.form of traveling pattern. _ _ dom phase and amplitude. It first developed into the canoni-
Consider a scalar neural fielad(x,t) e R defined in the cal hexagonal structure, but shortly after approaching its ex-
planex e R? with the form pected stationary state of amplitudes, the hexagonal circle
q ) motif became egg shaped and the pattern proceeded to march
u(x,t i i i 2
( — —u(xt) +AS LU D], ) vertically with uniform speed 9810 -~ rad/sec.

dt As the pattern moves at constant speed it maintains its
asymmetric motif and the phases of the principal hexagonal
Hereu(x,t) is the average membrane potential at position pattern modes are seen to increase linearly with time; see
and timet. The nonlinear functiori(u) determines the neu- Fig. 2.

ron output, the pulse repetition rate. This is taken here as the Our analysis proceeds via the standard method of ampli-

polynomial f(u) = au+ Bu?— yu®, and« is the key(bifur-  tude equation reductiof11,12. With periodic boundary
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FIG. 1. Traveling hexagons in a 2D neural field shown with time increasing to the right. The canonical hexagonal resonant-triad pattern
develops an egg-shaped motif and then travels downwards with speed®.3 rad/sec. Parameters are given in the Appendix.

conditions, solutions to Eql) are sought for as a sum of number of modes. The section concludes by using the de-
complex Fourier plane waves: rived condition to predict the occurrence of a “quadratic”
traveling pattern in the pur€-field.
1 1 Heox ok ik In Sec. IV we place our results in a broader context of
ux.H)=3 &t +3 Z‘l [&(1eN 7"+ & (e 7], (2 nonlinear fields, suggesting which type of field structure is
: necessary to support traveling waves. We also suggest how
where the complex amplitudg(t) of modej and its conju- the field may model actual biological systems, in particular
gate gj* (t) do not vary in space. They have wave vectorspe”St?"S'S in the dlgest_lve system. D_etalls of all numerical
k; and—k; , respectively. Modgoe R is the “zero” or “dc ~ &XPeriments are found in the Appendix.
mode,” representing a time-varying mean value of the field.
The standard approach involving substitution of E).into Il. TRAVELING ROLLS IN A PURE-CUBIC FIELD
Eq. (1) yields a series of complex amplitude equations that
can be further separated into real amplitudgsand phases
@; using &j(t) =A(t)e' ¢, Assuming theA; have reached Consider a field solution comprising the single @jland
their stationary states, each component of ycan then be its third harmonicés,. Assuming these are the only active
written asA;e’i **'%(0, and will satisfy a nondispersive modes, substitution of the suf@) into Eq.(1) produces the
wave equation if amplitude equations

A. The §,-&5, system

(-bj(t)=C‘kj, 3 ép:("pfp_'pr[%gpwplz"_%§p|§3p|2+z§1§;§;§3p]1 (4)

where ¢ is the wave velocity. Moreover, when all modes . _ 3 2.3 2.1
comprising a particular pa¥tern satisfy E€B) simulta- &3p=03p€ap— YFapl 3 €apl Eapl "+ 2 Epl €pl "+ T €pEpép]
neously, then the nonlinear pattern will advance coherently
as a whole. EquatiofB) leads to existence conditions, solu-
tion branches, and stabilities for traveling pattern solutions to 180
amplitude equation representations of nonlinear fields. Fig- 160}
ure 2 illustrates how the projection of tke ontoc bring the
¢; into relationship; the phase speeds of the principal hex-
agonal modeg, 1y and §o ) are related byp g 2=2¢ 2 1
for the observed vertical motion.

This paper is structured as follows. In Sec. Il we begin by
applying Eq.(3) to the simplest canonical pattern that may 60l a1
“go traveling,” the single roll. In a puréz nonlinear field
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this can be most simply modeled by two Fourier modes, the
principal mode &, with wave vectork, and the third har- 20r 1
monic &3, with wave vectorks,. Using Eq.(3) we derive 30500 2050 2500 090 3390 %000

existence conditions, and also analyze the local bifurcatior
from the standing solution branch, producing results analo-
gous to[13]. Comparisons with numerical experiments are g, 2. phase evolution for the principal componefjts, and
made. The amplitude equation system is then extended tg,  of the vertically traveling hexagonal pattern in Fig. 1. Phase
include &5, with ksp=5k, and a new existence condition speedsp,, and¢,; are in the ratio of their vertical components,
obtained. 2/1. The onset of fraveling occurs after the pattern has remained

In Sec. Il we generalize these results and derive an exisclose to a stationary standing state for a long tim@000 sec. See
tence condition for patterns in 2D comprising an arbitraryrig. 5 for key to mode indices.

Real Time (secs)
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Here theo;=(F;—«) are the linear growth rates;; the
Fourier coefficient of convolution kerneA at frequency
Ik;ll, and « the bifurcation parameter. Termg £y, into

&3p and %g; & £3p into &, both arise from overlap of the four
modes in theinteraction set{&,,¢,,¢p,&3,}, Whose wave
vectors sum to zero,K3 —k3,=0. The mode equation@})

are best rewritten in terms of real amplitudes and phases for
the principalA,, ¢, and third harmonid, , ¢3, modes,

Ap=0pAp— 5 YF pALAG,COL dap—3bp) — § YF oA

3 E AA2 FIG. 3. Solution di_agram for the,- &350 system W_here b_ifur-
2YFpRp3p: cation parameter- « increases, from the primary bifurcation at
. 3 i A, to the left. The stable standing pattern bra#dB is dominated
¢p: —27FpArAsp sin( ¢3p_3¢p)' (5) by A, close toA, and makes a secondary supercritical pitchfork
. L 3 s 3 bifurcation to traveling patternBC. This branch loses stability at
Azp=03pAzp— Z?’FspApCOS( $h3p— 3¢p) 3 7F3pA3p Hopf pointD. A second standing branch bifurcatesGitsubcriti-
VY A2 caI_Iy. Thignis dominated _bYA3p nearG, and turns around to briefly
p3pMps gain stability at Hopf poinH.
. 1 Ag ) It is straightforward to obtain an exact analytical solution
b3p=7 vFap s Sin( pzp—3p). for the traveling branch and its stability. To do this we use

the dimension-3 system of two amplitud&s, Az, and phase
Looking for stationary solutions to E¢5), we recognize that 0= ¢3p— 3¢, defined by
amplitude and phase are differently flavored variables. Sta- ; _ 3 2 3 33 2
tionary solutions must have constant amplitudes-0, but Ap= 0y~ & YFpAPAICOSI — 2 YF AL 2 7F pApAp.
their phas_es may be e.ither cpnstatﬁq_(: 0) or steadily i'n- A3p=U3pA3p—%'yF3pAgCO§— A3T'yF3pAgp_:zi'yF3pA3pAF2)r
creasing (;#0). Solutions withe,= ¢3,=0 are standing
patterns corresponding to=0 in Eq.(3) and imply the fixed o= }
phase relatiorpz,— 3¢,=nm between the modes. Solutions 4
with ¢,#0, ¢3,7# 0, will form traveling patterns if they sat-
isfy Eq. (3). Substitution of the phase equations into E).
shows this to be possible if

A3
| Fap A—; + 9FpApA3p) sind. @)

These mode equations together with the condi(@riead to
the following closed-form solution for amplitudes of the
traveling patterns:

A;ﬁ 32A§p:O © e 4 \V2(3F (1-3u?) —4x| 12 .
Fo Fap PT13yF,) | B(1—3ut—and) | ®)
i.e., FyF3,<<0. This is the condition for the existence of where
traveling patterns in thé,-£;, system. The systertb) has 12
therefore the correcitructureto support traveling patterns, = ﬁ: E ( _Fsp) 9)
and will do so if the parameters satidfyF;,<0. Condition Ap 3\ Fp ’
(6) holds if sig#0: 6= ¢3,— 3¢y i.€., there exists a phase
shift between the principal and harmonic modes. We inter—and for the phasé,
pret this phase shift as driving the individual phases oo (9u*+20u2+ 1)k +9(ut— u?F, 10
b3p,¢p at differential rates to maintain pattern coherence. Co= ,u[3Fp(1—3,u2)—4K] . (10

This phase difference is responsible for the slightly aniso-

tropic appearance of the pattern mgt€e Fig. ], character- These results are comparable with those of Armbruette.

istic of our traveling waves. For the remainder of this papef13] for the case of quadratic nonlinearity. We turn now to
we shall chooseF,>0, F3,<0, and refer to modes with calculating the stability of these patterns. The Jacobian

F;<0 as “inverted” evaluated from Eq(7) using Eq.(9) becomes
|
—(6+3u cosd) —(12u+3 co9d) 3uAgsing
2 _ _ 4 _ 2 H
3=t A2 u (12,u,+?->0089) I COS.O 6u”) 9uAysing 11
47 PP 1 sing 18 sing 0
B A

Requiring the real parts of the three eigenvalues to be negative generates the following constraints on pareméter
vicinity of the bifurcation point(with F;,<0),

3ut+4u®—1<0, ie., u<u,;=0.464, (12
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Qu—2u—1<0, ie., u<w,=0.722, (13
3ut—18uc—12u?—2u—1<0, i.e., u<6.62. (14

The first constraint subsumes the others and therefore determines the stability of the traveling pattern branch, and expresses
this in terms of the ratid=3,/F,. The second and third constraints taken together make the uppe,12fx2 “block”
everywhere stable. It turns out that these two constraints also specify the stabilitystatigéngpattern branch. To see this

first note thatl, is block diagonal at the bifurcation point (##0), with a 22 upper block and a zero lower<il block.

If the traveling branch is stable then thlg 2X 2 block is also stable, by virtue of Eq&l2) and (13). So at the bifurcation

point there is a 1D nullspace associated with the lower block. But the standing branch has a block diagonal Jacobian along its
entire length,

3 — (2% ) —(4px1) 0
Jo=7 YFohA} 9 (4u*rl) —3vA(+1Uu—6u?) 0 : (15)
0 0 +=3u(1— v u?)
|
with w=Ag,/A,, andv=3(—F3,/F,)"?# u except at the lim og=(Fgp—Fp), (18)
bifurcation point wherev=w. Here it inherits the stablé, k—F

2X2 block and the 1D nullspace. Sindg is everywhere
block diagonal it represents separate subsystems of ampliequiringF;,<F, to avoid a general phase instability. This
tude (2X2 block and phase, the latter associated with theis automatically satisfied here singg,<0.
lower 1X 1 block, thus with the nullspace. We conclude that
the standing pattern experiencesphaseinstability at the
bifurcation point. o ] ) )
Conditions(12) and (13) completely specify the stability Pre_dlctlons of t_he abovg analysis were test.ed |n.numer|ca|
of branches straddling the local bifurcation. Note that theeXperiments solving the fieldl) on the line discretized to
terms in Eq.(12) appear in the numerator of the expressionl00 points(numerical details are given in the Appengix
for A, Eq.(8). This means that there is a supercritical pitch- Figure 4 shows a typical scenario of evolution from random
fork bifurcation to stable traveling branches df<p,, u initial conditions, first through a transient qua_srstandmg pat-
<u, and a subcritical pitchfork to an unstable traveling tern, then to a stgplg travellng_ pattern. Amplitude and phase
branch if 4>y, #<pu,. Both branches are unstableyif plots show clear |r_\|t|al competition betw_eei,fgl _andf_s, won
> g, wS o by &5 .when the third ha_lrmomc phasgs is driven into the .
The local bifurcation is shown in the partial solution dia- traveling pattern condition. Thereafter the pattern runs with

gram Fig. 3. Standing pattern bran&lB G emerges from the  $15/15<¢s/S. This is a stable pattern; nonresonant modes
homogeneous state Atand bifurcates supercritically to the (€.9.,€s and&;o) decay down to noise levels.

traveling branchBC. Initially stable, this branch loses sta- ~ The stationary state field values are within around 10% of
bility at Hopf point D. Close to the bifurcation poing,  Predicted values, e.g., fok=0.098, A(field)=0.7175,
branchAB solutions are dominated by larde,. An unstable ~ Ap(AE'S)=0.763 (where AE denotes amplitude equation
branch of standing patterns dominated by lafgg bifur- but bifurcation points differ significantly. These errors are
cates subcritically a6, turning around to recover stability at traced to the large fifth harmonig, component, and disap-
the Hopf pointH. This joins to the traveling branch &. pear when this is included in the amplitude equations; see

The bifurcation points are calculated by substitutivg0,=  Sec. Il C. _ _ _
in Eqg. (10): The kernel used in these experiments was a weighted sum

of three Gaussian§‘tri-Gaussian”) and was computed in
the frequency domain as

B. 1D numerical experiments

—9(u*+ ud— u?)+3u

K= 9M4+ 20[(,(,24- 4M+ 1 p (16) TG( k) — _W187 0§k2/2+ (1+ W1)67 a-gk2/2_ e a§k2/2’ (19)
with 0y=1.128,0,=2.82, 03=5.451,w,=0.4. This peaks
_(pt-uPp®)+3u 1 at wave numbek=2mx5/100 F,=0.339) and has a sig-
Ke=— Iu+20u’—4u+1 P (17) nificant inverted mode ak=27Xx15/100 F3,=—0.186).

The reasons for building this kernel are detailed in Sec. IV; it

is the simplest biologically meaningful kernel that has appre-
Finally, the stability of the standing branch far fr@can  cjable negativer; .

be calculated from thdy 1X1 block. This is invariant to
sign changes inA,A,cost).0=nm, and so is Eq(7). All
branchesAB: #=n1r therefore have the same stability. Also,
this phase eigenvalue has a simple limit as the critical point The modes comprising the&,-§3,-&5, representation
is approached: form three resonant interacting seus,z{gp,gp,gp,ggp},

C. Traveling rolls — the &,-&5,-&s5, System
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FIG. 4. Traveling solutions to the field) in 1D: Left: Space-time plot with time increasing vertically downwards shows evolution from
random initial conditions £ 10 %) through a transient state to the stable traveling state af280 sec. Key amplitudegente) and phases
(right) show principal modeA,=As winning the competition oveAs (and other modgsat the onset of traveling. The third harmonic
A5 decays initially until its phase clicks into resonance with whenceA s is driven byAg and rises. Nonresonant modes, efy4 and
A, decay to noise levels. Mode indices, used as labels, are wave numbegs2:r.

=& & Ean EEY, |y =& &5 &5 . which to- This enhanced system has been studied numerically with the
gltlath{egrp v%/’ijth%groggg}. anll(lj S{gﬁc_g;?nf,fﬁggi"e}rms lead to the&ontinuation softwareocsir [14]. Solution branches around
dimension-5 system the standing-traveling bifurcatidd retain their topology, but

the positions ofB andD are shifted. Agreement with field
experiments is now better than 1%, e.g., for0.134422,

Em o b yF (362 g p g gtk 3p g ek A,(field)=0.650, A (AE's)=0.649, and ¢s(field)=2.29
PP PL#53pSp T 453pSp Sp T 255p5p S3p X 1072, ¢s(AE's)=2.23<10 2 rad/s, so Eq(20) may be
+3Ep|EplPH 3 Epl Epl 3 &0l E5pl P, (200  safely used to predict parameters for traveling patterns.

We now turn to the question of the existence of traveling
v — Ea Y 43 * 43 * gk solutions to_thls system, in particular we deduce conditions
Sap=3pbap~ YFaplaEplpbp t 2Epbepbapt atopty &p on the Fourier coefficients,,F3,,Fs,. The strategy to be
+3 Eapl €pl?+ 3 Eapl Egpl *+ 3 E3pl Espl I, presented will be generalized in Sec. Ill to 2D patterns com-
prising M modes. First the phase equations for theare
extracted from the complex mode equations, multiplied by

Ero= p b — YEe [ 3828, + 382 g% 4 3 2 rom t r ! |
Esp=0spésp— YFspl 2€p€apt 2€3p8p + 2 Espl &l A?, and written in matrix form using the 1D traveling wave

+ 5 Espl E3pl P+ § E5pl E5pl 21 condition ¢;=ck; to generate the right-hand side:
kA2 T
IR, BAMARAs,  EAGASA Sin(ap—3bp) c F,f’\z
“IRAs,  IAAGAs,  —3ASAGA || Sinldsp— bap—2by) | =c| —2 @y
0 —3A2A5As,  3ALAGA, |LSIN2Psp~ dsp=dp) kspZ"%p
L Fsp

Note that thegth column in thisphase matrixcontains terms  wave numbek;, writing k,,,=nk, and adding produces the
generated by thgth interaction set, and thejth row con-  null row. Then the right-hand side sums to

tains terms in thgth phase equation inte;. Clearly the ICAZ K2 AL K2 A2

phase matrix has rank equal to 2 reflecting the neutral stabil- PP, T3p78p , TOPTSP
ity of translation on the line: multiplying each row by its Fp Fsp Fsp

0. (22
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This is the condition on th&;’s for the existence of travel- Using the condition on traveling Wave;(qzc. k; on the left-
ing pattern solutions and extends the red@t obtained hand side, the system & phase equations can be written in
above. It may be formulated &s,F3,Fs,<<0 and requires concise matrix form, here with the addition of terms from the
the existence of an odd number of inverted modes. It is imsecond interaction sét,

portant to note that the addition of the fifth harmonic does

not cause phadeckingthus stopping the traveling; indeed it [ C ijj2 7
may induce it. Phase locking results when the rank defi- “FE
ciency of the phase matrix is removed by an additional in- | c-k]Az
teraction set that shares the same modes as an existing inter-| — &is Fk K
action set. Such sets are producedalfigsing in a spatially a . k
discretized systerfil5]. ke 11 ABS'”(Ed’B) c kA2
Asymmetric standing solutions to E0) have also been 4B ~Ac _ - F
found usingLocBIF when F F3,F5,>0. Here the differ- amg  8mc I1 Acsm(z(ﬁc) o kA2
ences¢,,—N¢,#nm but ¢,,=0, so that a standing but anc Fm m
asymmetric pattern is produced. All such patterns found ] m,
were unstable. c-knAj
- Fn -
lll. EXISTENCE OF TRAVELING ROLLS (26)
A. General conditions on theF, Each column of the phase matrix contains terms generated

The above resul22) can be extended to patterns consist-PY @ Single interaction set. Each row contains a phase equa-

ing of an arbitrary number of modes in 1D or 2D. Considertion into one mode. The coefficienggg within each inter-

N interaction sets involving a total dfl modes, therM action set turn out to be proportional to the number of times
equations of the fornE;k;=0 can be written. But sincén mOdf ¢ appears within that set. For example, I

2D) all vectors can be expressed as a sum of two basis priri= 1§ +ém:ém.én} We haveac=—1, anc=2, andanc=1.

cipal wave vectork, andk,, the system oM equations has These coefficients are in turn proportional to the coefficients
rank M —2. There are therefore two degrees of freedom inOf the wave vectors in the selection integral sum. kothis
phase variables that correspond to unconstrained positioninl§, ~ Ki+2km+k,=0. The result of all this is that since the

sider two general cubic interaction seétg=1{&* ,&,& &,  Plication of each rowj in Eq. (26) by the corresponding
and | c={&* ,&m ém Enl. Set 1y generates Jthe following Wave vectork; and summation over all rows will generate
s mSm::S5nJ -

contributions to the phase equations: the null row. The right-hand side of E¢R6) then also sums
to zero to give

Y AA AL k(G k. )A2
¢j__ajBFjTj3|m¢j_¢k_¢l_¢m)i (kDA 0 @7
je®OCU--) Fi
. AAA, . - .
d=agFk —5— SiN(¢;— d— 1 — b)), It is easy to show that when wave velocityies symmetrical
Ak with respect to the wave vectors, then this sum becomes
p=1. (23 (c-kj)2A?
. —2—1=o, (28)
Coefficientsajg enumerate terms that are generated when the je(BUCU:--) Fi

series(2) is substituted into the fieldl), e.g., a contribution

to a5 is made when the selection integral where the sign of each term is clearly the sign of the associ-
i

atedF;. This is the general condition for the existence of

. KKtk traveling patterns in a 2D neural field with pugenonlinear-
& fk&fmj e (Tt htkitkn) Xgy 0, (24 ity, and implies that there is at least one inverted mégle
<0.
i.e., when—k;+k+k;+kn=0. Multiplying the jth equa- Application of Eq.(28) to the 2D pattern in Fig. Iwith

tion (23) by the associateel\j2 transforms each term to a Spectrum in Fig. b using the symmetr§(_, )=F_5_1),
common amplitude factoA;AAA,=ITAg with common  €tc., results in
phase sumeo;— d— ¢ — dn==(¢g). Then Eq.(23) be-

2 2 2 2 2
comes A2y Aoa  A-2-3 ,  Ala-2 , Aos
+2-22 49 +4 +8
_ Fi—2y  Foa F2-3 Fa-29 Foog
Afd=—aeF]] Agsin 2 (), A2
+81-22 —p, (29)
F9
2 .
Aid=ayeFill Assin 2 (), (25 which is satisfied SINCE 5<0.

The existence condition$6), (22), and (28) partition
1=, modeenergy(Ajz) between modes. The total energy in the
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0%A] . 1PA;  2°A%,

o ° Fo Fp Fyp 0 D
o [ =] o
° L% o O o so that the dc mode drops out aA§F2p= —4A§pr. The
° o o o condition for the existence of traveling patterns is thus
o T o °© °© L. % FoF2p<0 identical to that noted 7] for the quadratic
o o o o O o nonlinearity. Note from Eq(31) that even though the dc
° e % o o} o mode is involved in the traveling pattern and contains en-
° . % . o O o ergy, it does not share in the energy partitioning. This is
o o ° ° consistent with its role as catalyst. Also, a sole inverted dc
° . ° ° . ; modeF,<0 clearly cannot initiate traveling patterns.
° ° {01
A (10)

IV. DISCUSSION

FIG. 5. Fourier spectrum of pattern in Fig. 1. Circle diameters 1N€ conditions necessary for the existence of traveling
indicate the relative sizes of the modgg ,) constituting the pat-  Pattérns in a pur€& field have been deduced above in the
tern. Zero frequency is in the center, surrounded by strong principapP€ctral domain. Here we consider their implications for the
modes. Arrows show modes in the interaction setfield in physical space, in particular for the allowed field
(€69 £(-2.-1) 10—y £(0-4)} Which drive the traveling pattern. Structures which are able to support traveling patterns. The
These clearly contain abnormally high energy. condition II;F;<0 in the above analysis actually has two

implications: firstly, that an inverted modg <0 exists and,
normal modes equals that in tiew) inverted modes. A secondly, that the Fourier coefficierfts actually appearas
typical 2D pattern with a large spectral dimension will usu-factors of each nonlinear term in tie amplitude equation;
ally contain just a few inverted modes whose energy willonly then is the above analysis valid.
then be relatively large. We can think of this energy as The first implication specifies the form of the connection
“driving” the traveling pattern. This is the case for Fig. 1 kernel A. In engineering, negative Fourier coefficients are
where the inverted modeS, <0 andF_, <0 contain  usually encountered as the result of truncation of the kernel
abnormally large amounts of energy in their ladgevalues, ~ extent in space. Since this may not have any biological rel-

as clear from the spectrum Fig. 5. evance our kernels do not rely on spatial truncation. Instead,
we constructed the simplest biologically meaningful kernel
B. k—2k traveling patterns with pure-C nonlinearity that generated significant inverted mode Fourier coefficients

_ . while not depending on spatial truncation. This was done
The above results will now be used to show the existencgsing a weighted combination of three Gaussians, compris-

of k— 2k traveling patterns in a neural field lacking quadraticing a small central inhibitory region surrounded by a larger
nonlinear terms, but with pur€-nonlinearity. The quadratic excitory region in turn surrounded by a larger inhibitory re-
nonlinearity is usually invoked to support the- 2k resonant  gion Eqg.(19). This can be thought of as a classical “center
interaction[ 7], but this is not in general necessary; we havesurround” kernel with an additional smaller inhibitory
previously shown that the dc or zero mode can activelynucleus, or else as a concatenation of two difference of
couple to mediate an effective quadratic interaction in theGaussian kernels.

case of standing pattern&6]. Here we shall show how this The second implication of our analysis, that the Fourier
dc-mediated quadratic interaction can also support2k  coefficientsF; actually appear as a factor in each nonlinear
traveling patterns. Interactions between the principal modeerm in the; equations, translates directly into conditions on
&p, its harmonicé,,, and the dc modé, are described by the structureof the field in physical space. For example, our
the amplitude equations analysis of the above field,

o= 00bo— YFol 5 Epépéop T 3 Eaptp &5 + 3 &0l £ol? U= — kU+A®f(u), (32)

3 2 143 . .
+ 260l E20l" 3801, generates amplitude equations of the form

€= 0pkp— YF ol Béapbols + 6ol €517+ 36|20+ %gpf(é], &= (aF |- 0§+ FlBEE— vEbiénl, (33
30)
where theF; do appear in each nonlinear term, so that the
£ = —F. 3 +3 243 2 field (32) can support traveling patterns. But our analysis
§20= 72p820~ YFapl 7ptpto 2§2p|§p| 4§2p|§2p| applied to fields with structure
+ 3 éap85],

ui=f(u)+Axu (39
which apart from self- and cross-damping terms contain the
interaction set{&,,£5,.£,.£,} Where &, is of course real. generates amplitude equations of the form
The wave vector sunky+ 2k,—K;,=2k,—k,,=0 since .

ko=0. Applying Eq.(27) to this system gives §i=(aFj— k) &+ Bk~ vééi&m, (35
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where theF; do not appear in the nonlinear terms. This fieldwould drive the motor neurons of the intestine muscles. A
will not support inverted-mode generated traveling patternssecondary prediction concerns tlshape of the observed
Note that the Swift Hohenberg equation is of the latter typewaves, which, as a consequence of the phase-driving mecha-
and so will not support traveling Turing patterns. The othemism, must be slightly anisotropic, not exactly sinusoidal.
important class of field that does have the correct structure i$he various operating modes, peristaldimveling wavep
reaction-diffusion systems mixing (standing waves and ileus(quiescent stajeappear

as branches in our solution diagram.

u="f(u)+DV?u, (36)
which generate amplitude equations of the form V. CONCLUSIONS
'gga):Uj(a>(,<)§](a>+Q}glb@(,()gf(b)gl@) Qbservations of travelin_g Turing patterns in p@eneu-
ral fields have been described and tools developed to allow
+CIEPSI(k) EXEVEY (37  their prediction. In particular, the existence conditions on

field structure and parameters have been derived for a gen-
wherea,b,c,d select the vector field componeritsl]. Here  eral case, these have been used to find novel dc-catalyzed
the interaction coefficient®(’? andC{Z>s? depend on the k- 2k patterns. A local bifurcation analysis has been made
mode wave numbers, and may go negative, providing aifor traveling rolls. These patterns bifurcate by a phase insta-
equivalent condition tdI;F;<0. We expect our traveling bility, which is manifested as a breakdown in the phase link-
patterns to be found in reaction-diffusion systems. ing of ¢, to ¢3, by ¢3,—3dz=nm for standing patterns,

An intriguing and important question naturally arises. Isthe harmonic mode being repelled away in space. This mode
there any biological significance of our results, in particularthen miraculously finds a stable configuration with the prin-
the existence of traveling patterns in a random homogeneouspal mode. The stability originates in interactions between
neural network? Periodic and traveling patterns such as iramplitudes and phase, which in effect remove the block di-
sect gait, swimming fish, and feeding action in crustaceanagonal structure from the system Jacobian, lowetipde-
have indeed been extensively studied, and associated neutal zero, and stabilizing the traveling pattern. In short, the
circuitry discovered. But these neural circuits are formed oubnset of traveling patterns is due to a phase instability, their
of dedicated “central pattern generators,” small groups ofstable existence is ensured by nonlinear amplitude-phase in-
neurons that once initiated by a control signal from the centeractions.
tral nervous system drive the motor neurons and attached
muscles. The gastric system of decapod crustac€aris
consists of some 30 neurons “hardwired” with specific in- ACKNOWLEDGMENTS
terconnections. Different rhythmic activity is obtained ac-
cording to levels of chemical neuromodulators. The swim-
ming control of the lamprey{18] consists of repeated
segments of hardwired neurons with specific connections.
distributed central pattern generator.

These examples contrast markedly with the random ho-
mogeneous connections of our neural field, which lacks to- APPENDIX
tally specific, dedicated, hardwired connections. There is,
however, one nervous system that does resemble our neural Numeric experiments on the field) were performed by
field. This is the enteric nervous systeiENS) which con-  discretizing the field and integrating the system of ODE'’s
trols bowel movements. Although the neural circuitry is still obtained as a function of time. Adaptive Runge-Kutta and
being actively researched, it clearly consists of a network ofStiff (backward differentiation formujamethods were em-
motor, sensory, and interneurons embedded between the loployed in parallel to obtain checks. The convolutions for the
gitudinal and circular muscles of the bowel. This structurelD experiments were performed in the Fourier domain, after
supports slow, almost sinusoidal, traveling electrical wave® standard fast Fourier transform. This removed any prob-
by reflex activity [19,20. In a series of elegant papers, lems associated with aliasing of pattern components. The 2D
Miftakhov et al, have modeled the electrophysiological, me-experiments were made with direct convolution in the physi-
chanical, and pharmacological aspects of the ERB22. cal space domain. The fundamental pattern frequency was
They model the intestine as a series of repeated functiongmall enough to avoid generation of significant aliasing com-
modules, with full specification of the mechanical and elecponents.
trophysiological details: a distributed pattern generator.

Our field Eq.(1) provides a different sort of model for the
ENS, at the level of @enericdescription. No electrophysi-
ological details are specified; the model provides a “shell” The difference of Gaussian convolution in 2D was calcu-
that via its predictions may help guide the search for thdated as the difference between the field convolved with the
anatomical and physiological details. The main prediction ofseparate “inner” and “outer” Gaussian components. Each
our model is that the most likely neural circuitry contains a2D Gaussian convolution was performed as the composite of
distribution of axon or dendrite projections with three char-two separated 1D Gaussian convolutions, inxhendy di-
acteristic scales. This circuitry could be provided by intersti-rections. This ‘“separable” convolution technique is effi-
tial cells. These could generate traveling waves, whickcient. Each 1D convolution mask was calculated as

We thank Professor A. Oosterlinck for interest in and sup-
port of this work, and G. Dewel and P. Borckmans of the
%Jniversit’e Libre de Bruxelles for bringing additional mate-
ial to our attention.

Parameters for 2D traveling pattern (Fig. 1)
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1 - be conceived as a weighted difference between two differ-
G(x)= g~ (X X)%20% (A1)  ence of Gaussian kernels. The field was discretized to 100
N27o points, the pattern had principal wave number=(2)
% 5/100.

where the inner and outer width parameters werge

=12.5/2, 0,=12.5. Each kernel was sampled at the points
up to a distancet 20 relative to its centek.. The 2D field 3. Parameters for dc-mode catalyzed traveling pattern
u(x,t) was discretized on 100100 pixel$. Field param-

eters werep=1, =0, y=1.5, x=0.018. A representative example can be computed using a

weighted combination of a Gaussian function with its second
and fourth derivative$G-GD). In the frequency domain this
is

Here the kernel was defined as a “tri-Gaussian.” This is a 5 s
weighted sum of three Gaussians, and is computed in the G-GD(k)=10.0k?(1—k?w;)—w,le 7 K72 (A3)
frequency domain as

Parameters for 1D traveling pattern (Fig. 4)

TG(K)= —wye 724+ (1+w,)e 72— o532  (pp)  with kernel parameters=3.8, w;=3.6, w,=0.01 and field

parametersx=1.0, 3=0.0, y=1.5, k=0.05406. A travel-
where herer;=1.128,0,=2.82, 03=5.451, w,=0.4, and ing pattern with wave number 2 xX5/100 emerges in a
a=1.0, B=0.0, y=1.5, k=0.134422. The kernel can also field of discretization 100 pixels.
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