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Traveling Turing patterns in nonlinear neural fields

C. B. Price
Department of Physics, Katholieke Universiteit Leuven, Naamsestraat 61, B-3000 Leuven, Belgium

~Received 18 July 1995; revised manuscript received 6 February 1997!

Traveling pattern solutions to a nonlinear neural field are studied numerically and analytically. These occur
in a homogeneous field without oscillatory or excitability properties, in a region of classical Turing instability.
Our observations from one-dimensional and two-dimensional numerical experiments are reported and used to
derive general existence conditions on both field structure and parameters, to support traveling patterns. These
conditions are used to predict and observe novel traveling patterns catalyzed by the ‘‘zero’’ mode. A local
bifurcation analysis is presented for traveling rolls in a field with pure-cubic nonlinearity. Our results are then
placed in a broader context of nonlinear fields, and the biological significance is discussed.
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I. INTRODUCTION

Traveling waves and traveling wave fronts are we
known solutions to nonlinear spatially distributed system
such as reaction-diffusion systems and neural nets. W
train solutions appear in systems with oscillating kinetics
Hopf bifurcation@1#, and excitable media display solitary o
trigger waves@2#. Even standing patterns in classical patte
forming experiments have been observed to go traveling
secondary bifurcation. Rayleigh-Be´nard convection@3#, di-
rectional solidification@4#, the Faraday instability@5#, and
Couette flow experiments@6# have all shown this effect. A
model for this drift bifurcation is presented in@7#. In this
paper we report our observations of traveling pattern so
tions in numerical experiments with scalar nonlinear neu
fields where the nonlinearity is purely cubic. Traveling p
terns appear spontaneously in a region of Turing instab
from a variety of initial conditions.~The Turing instability
usually refers to spontaneous symmetry breaking in react
diffusion systems to nonequilibrium structures with wav
length not directly linked to the field size. The great simila
ity between the description of reaction diffusion systems a
our neural fields in the Fourier domain leads us to the m
general application of the name Turing.!

We present a straightforward local bifurcation analysis
a one-dimensional~1D! pattern consisting of principal an
third harmonic modes, and obtain constraints on the ne
field structure and parameters to support these patte
These parameter constraints are then generalized to 2D
terns consisting of an arbitrary number of modes. To illu
trate the application of these constraints, we predict and
cover a form of traveling pattern.

Consider a scalar neural fieldu(x,t)PR defined in the
planexPR2 with the form

du~x,t !

dt
52ku~x,t !1A^ f @u~x,t !#. ~1!

Hereu(x,t) is the average membrane potential at positiox
and timet. The nonlinear functionf (u) determines the neu
ron output, the pulse repetition rate. This is taken here as
polynomial f (u)5au1bu22gu3, andk is the key~bifur-
551063-651X/97/55~6!/6698~9!/$10.00
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cation! parameter. We shall takeb50 throughout this pape
corresponding to a pure cubic~‘‘pure-C’’ ! field nonlinearity,
anda51. While a sigmoidf (u) is commonly used in neu
rophysiology, the above polynomial allows direct specific
tion of nonlinear effects.

The operator̂ represents spatial convolution with kern
A, which determines the input connections to each neu
Here these consist exclusively of recurrent feedback conn
tions from nearby neuron outputs. We assume there is s
form of lateral inhibition; nearby neurons are excitory a
distant neurons are inhibitory in the feedback to each neu
input.

The spectrumFk of the convolution kernelA then peaks
around a principal spatial frequencykp where it is positive in
sign, and falls off for harmonics of this frequency. This is t
classical recipe for production of patterns dominated by
principal spatial frequency, ask moves the system throug
criticality. Various kernelsA are used in our experiments, a
with neurophysiological significance, such as the ‘‘differen
of Gaussian’’ function~DOG! @8#, the Gaussian derivative
@9#, or linear combinations of Gaussians.

Finally, the term2ku(x,t) represents the effects of th
passive membrane input to each neuron. This field equa
is well known in neural network literature, and was orig
nally derived in the context of randomly connected neuro
@10#. It is interesting that a random net is able to supp
traveling patterns; this is discussed in Sec. IV.

A typical example of a traveling pattern solution to E
~1! observed in our numerical experiments is seen in Fig
The initial pattern comprised a small number of rolls of ra
dom phase and amplitude. It first developed into the cano
cal hexagonal structure, but shortly after approaching its
pected stationary state of amplitudes, the hexagonal ci
motif became egg shaped and the pattern proceeded to m
vertically with uniform speed 9.331022 rad/sec.

As the pattern moves at constant speed it maintains
asymmetric motif and the phases of the principal hexago
pattern modes are seen to increase linearly with time;
Fig. 2.

Our analysis proceeds via the standard method of am
tude equation reduction@11,12#. With periodic boundary
6698 © 1997 The American Physical Society
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FIG. 1. Traveling hexagons in a 2D neural field shown with time increasing to the right. The canonical hexagonal resonant-tria
develops an egg-shaped motif and then travels downwards with speed 9.331022 rad/sec. Parameters are given in the Appendix.
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conditions, solutions to Eq.~1! are sought for as a sum o
complex Fourier plane waves:

u~x,t !5
1

2
j0~ t !1

1

2 (
j51

`

@j j~ t !e
ik j •x1j j* ~ t !e2 ik j •x#, ~2!

where the complex amplitudej j (t) of mode j and its conju-
gate j j* (t) do not vary in space. They have wave vecto
k j and2k j , respectively. Modej0PR is the ‘‘zero’’ or ‘‘dc
mode,’’ representing a time-varying mean value of the fie
The standard approach involving substitution of Eq.~2! into
Eq. ~1! yields a series of complex amplitude equations t
can be further separated into real amplitudesAj and phases
f j usingj j (t)5Aj (t)e

if j (t). Assuming theAj have reached
their stationary states, each component of Eq.~2! can then be
written asAje

ik j •x1 if j (t), and will satisfy a nondispersive
wave equation if

ḟ j~ t !5c•k j , ~3!

where c is the wave velocity. Moreover, when all mode
comprising a particular pattern satisfy Eq.~3! simulta-
neously, then the nonlinear pattern will advance cohere
as a whole. Equation~3! leads to existence conditions, sol
tion branches, and stabilities for traveling pattern solution
amplitude equation representations of nonlinear fields. F
ure 2 illustrates how the projection of thek j ontoc bring the
ḟ j into relationship; the phase speeds of the principal h
agonal modesj (2,1) and j (0,2) are related byḟ (0,2)52ḟ (2,1)
for the observed vertical motion.

This paper is structured as follows. In Sec. II we begin
applying Eq.~3! to the simplest canonical pattern that m
‘‘go traveling,’’ the single roll. In a pure-C nonlinear field
this can be most simply modeled by two Fourier modes,
principal mode jp with wave vectorkp and the third har-
monic j3p with wave vectork3p . Using Eq.~3! we derive
existence conditions, and also analyze the local bifurca
from the standing solution branch, producing results ana
gous to@13#. Comparisons with numerical experiments a
made. The amplitude equation system is then extende
include j5p with k5p55kp and a new existence conditio
obtained.

In Sec. III we generalize these results and derive an e
tence condition for patterns in 2D comprising an arbitra
s
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number of modes. The section concludes by using the
rived condition to predict the occurrence of a ‘‘quadratic
traveling pattern in the pure-C field.

In Sec. IV we place our results in a broader context
nonlinear fields, suggesting which type of field structure
necessary to support traveling waves. We also suggest
the field may model actual biological systems, in particu
peristalsis in the digestive system. Details of all numeri
experiments are found in the Appendix.

II. TRAVELING ROLLS IN A PURE-CUBIC FIELD

A. The jp-j3p system

Consider a field solution comprising the single rolljp and
its third harmonicj3p . Assuming these are the only activ
modes, substitution of the sum~2! into Eq. ~1! produces the
amplitude equations

j̇p5spjp2gFp@
3
4 jpujpu21

3
2 jpuj3pu21

3
4 jp* jp* j3p#, ~4!

j̇3p5s3pj3p2gF3p@
3
4 j3puj3pu21

3
2 j3pujpu21

1
4 jpjpjp#.

FIG. 2. Phase evolution for the principal componentsj (0,2) and
j (2,1) of the vertically traveling hexagonal pattern in Fig. 1. Pha
speedsḟ (0,2) andḟ (2,1) are in the ratio of their vertical component
2/1. The onset of traveling occurs after the pattern has rema
close to a stationary standing state for a long time,'4000 sec. See
Fig. 5 for key to mode indices.
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Here thes j5(F j2k) are the linear growth rates,F j the
Fourier coefficient of convolution kernelA at frequency
ik j i , andk the bifurcation parameter. Terms14jpjpjp into
j3p and

3
4jp* jp* j3p into jp both arise from overlap of the fou

modes in theinteraction set$jp ,jp ,jp ,j3p* %, whose wave
vectors sum to zero, 3kp2k3p50. The mode equations~4!
are best rewritten in terms of real amplitudes and phases
the principalAp ,fp and third harmonicA3p ,f3p modes,

Ȧp5spAp2
3
4gFpAp

2A3pcos~f3p23fp!2 3
4gFpAp

3

2 3
2gFpApA3p

2 ,

ḟp52 3
4gFpApA3p sin~f3p23fp!,

~5!

Ȧ3p5s3pA3p2
1
4gF3pAp

3cos~f3p23fp!2 3
4gF3pA3p

3

2 3
2gF3pA3pAp

2,

ḟ3p5
1

4
gF3p

Ap
3

A3p
sin~f3p23fp!.

Looking for stationary solutions to Eq.~5!, we recognize that
amplitude and phase are differently flavored variables. S
tionary solutions must have constant amplitudesȦj50, but
their phases may be either constant (ḟ j50) or steadily in-
creasing (ḟ jÞ0). Solutions withḟp5ḟ3p50 are standing
patterns corresponding toc50 in Eq.~3! and imply the fixed
phase relationf3p23fp5np between the modes. Solution
with ḟpÞ0, ḟ3pÞ0, will form traveling patterns if they sat
isfy Eq. ~3!. Substitution of the phase equations into Eq.~3!
shows this to be possible if

Ap
2

Fp
1
32A3p

2

F3p
50, ~6!

i.e., FpF3p,0. This is the condition for the existence o
traveling patterns in thejp-j3p system. The system~5! has
therefore the correctstructure to support traveling patterns
and will do so if the parameters satisfyFpF3p,0. Condition
~6! holds if sinuÞ0: u5f3p23fp ; i.e., there exists a phas
shift between the principal and harmonic modes. We in
pret this phase shiftu as driving the individual phases
f3p ,fp at differential rates to maintain pattern coheren
This phase difference is responsible for the slightly ani
tropic appearance of the pattern motif~see Fig. 1!, character-
istic of our traveling waves. For the remainder of this pap
we shall chooseFp.0, F3p,0, and refer to modes with
F j,0 as ‘‘inverted.’’
or

a-

r-

.
-

r

It is straightforward to obtain an exact analytical soluti
for the traveling branch and its stability. To do this we u
the dimension-3 system of two amplitudesAp ,A3p and phase
u5f3p23fp defined by

Ȧp5spAp2
3
4gFpAp

2A3pcosu2 3
4gFpAp

32 3
2gFpApA3p

2 ,

Ȧ3p5s3pA3p2
1
4gF3pAp

3cosu2 3
4gF3pA3p

3 2 3
2gF3pA3pAp

2,

u̇5
1

4
gS F3p

Ap
3

A3p
19FpApA3pD sinu. ~7!

These mode equations together with the condition~6! lead to
the following closed-form solution for amplitudes of th
traveling patterns:

Ap5S 4

3gFp
D 1/2S 3Fp~123m2!24k

3~123m424m2! D 1/2, ~8!

where

m5
A3p

Ap
5
1

3 S 2F3p

Fp
D 1/2, ~9!

and for the phaseu,

cosu5
~9m4120m211!k19~m42m2!Fp

m@3Fp~123m2!24k#
. ~10!

These results are comparable with those of Armbrusteret al.
@13# for the case of quadratic nonlinearity. We turn now
calculating the stability of these patterns. The Jacob
evaluated from Eq.~7! using Eq.~9! becomes

FIG. 3. Solution diagram for thejp-j3p-u system where bifur-
cation parameter2k increases, from the primary bifurcation a
A, to the left. The stable standing pattern branchAB is dominated
by Ap close toA, and makes a secondary supercritical pitchfo
bifurcation to traveling patternsBC. This branch loses stability a
Hopf pointD. A second standing branch bifurcates atG subcriti-
cally. This is dominated byA3p nearG, and turns around to briefly
gain stability at Hopf pointH.
Ju5
1

4
gFpAp

2F 2~613m cosu! 2~12m13 cosu! 3mApsinu

9m2~12m13 cosu! 29~m cosu26m4! 29m2Apsinu

218m
sinu

Ap
18

sinu

Ap
0

G . ~11!

Requiring the real parts of the three eigenvalues to be negative generates the following constraints on parameterm in the
vicinity of the bifurcation point~with F3p,0!,

3m414m221,0, i.e., m,m150.464, ~12!
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9m422m21,0, i.e., m,m250.722, ~13!

3m4218m3212m222m21,0, i.e., m,6.62. ~14!

The first constraint subsumes the others and therefore determines the stability of the traveling pattern branch, and
this in terms of the ratioF3p /Fp . The second and third constraints taken together make the upper leftJu 232 ‘‘block’’
everywhere stable. It turns out that these two constraints also specify the stability of thestandingpattern branch. To see thi
first note thatJu is block diagonal at the bifurcation point (sinu50), with a 232 upper block and a zero lower 131 block.
If the traveling branch is stable then thisJu 232 block is also stable, by virtue of Eqs.~12! and ~13!. So at the bifurcation
point there is a 1D nullspace associated with the lower block. But the standing branch has a block diagonal Jacobian
entire length,

J05
3

4
gFpAp

2F 2~26m!

9n2~4m61!

0

2~4m61!

23n2~61/m26m2!

0

0
0

63m~12n2/m2!
G , ~15!
p
h
a

th
on
h

ng

a-

e
-

t

o,
oin

is

ical

m
at-
ase

ith
es

of

re
-
see

sum

-

; it
re-
with m5A3p /Ap , andn5 1
3(2F3p /Fp)

1/2Þm except at the
bifurcation point wheren5m. Here it inherits the stableJu
232 block and the 1D nullspace. SinceJ0 is everywhere
block diagonal it represents separate subsystems of am
tude ~232 block! and phase, the latter associated with t
lower 131 block, thus with the nullspace. We conclude th
the standing pattern experiences aphase instability at the
bifurcation point.

Conditions~12! and ~13! completely specify the stability
of branches straddling the local bifurcation. Note that
terms in Eq.~12! appear in the numerator of the expressi
for Ap , Eq.~8!. This means that there is a supercritical pitc
fork bifurcation to stable traveling branches ifm,m1 , m
,m2 and a subcritical pitchfork to an unstable traveli
branch ifm.m1 , m,m2 . Both branches are unstable ifm
.m1 , m.m2 .

The local bifurcation is shown in the partial solution di
gram Fig. 3. Standing pattern branchABG emerges from the
homogeneous state atA and bifurcates supercritically to th
traveling branchBC. Initially stable, this branch loses sta
bility at Hopf point D. Close to the bifurcation pointA,
branchAB solutions are dominated by largeAp . An unstable
branch of standing patterns dominated by largeA3p bifur-
cates subcritically atG, turning around to recover stability a
the Hopf pointH. This joins to the traveling branch atC.
The bifurcation points are calculated by substitutingu50,p
in Eq. ~10!:

kB5
29~m41m32m2!13m

9m4120m214m11
Fp , ~16!

kC52
9~m42m32m2!13m

9m4120m224m11
Fp . ~17!

Finally, the stability of the standing branch far fromB can
be calculated from theJ0 131 block. This is invariant to
sign changes in (ApA3pcosu):u5np, and so is Eq.~7!. All
branchesAB:u5np therefore have the same stability. Als
this phase eigenvalue has a simple limit as the critical p
is approached:
li-
e
t

e

-

t

lim
k→Fp

su5~F3p2Fp!, ~18!

requiringF3p,Fp to avoid a general phase instability. Th
is automatically satisfied here sinceF3p,0.

B. 1D numerical experiments

Predictions of the above analysis were tested in numer
experiments solving the field~1! on the line discretized to
100 points~numerical details are given in the Appendix!.
Figure 4 shows a typical scenario of evolution from rando
initial conditions, first through a transient quasi-standing p
tern, then to a stable traveling pattern. Amplitude and ph
plots show clear initial competition betweenj5 andj6 , won
by j5 when the third harmonic phasef15 is driven into the
traveling pattern condition. Thereafter the pattern runs w
ḟ15/15}ḟ5/5. This is a stable pattern; nonresonant mod
~e.g.,j6 andj10! decay down to noise levels.

The stationary state field values are within around 10%
predicted values, e.g., fork50.098, Ap(field)50.7175,
Ap(AE’s)50.763 ~where AE denotes amplitude equation!,
but bifurcation points differ significantly. These errors a
traced to the large fifth harmonicj5p component, and disap
pear when this is included in the amplitude equations;
Sec. II C.

The kernel used in these experiments was a weighted
of three Gaussians~‘‘tri-Gaussian’’! and was computed in
the frequency domain as

TG~k!52w1e
2s1

2k2/21~11w1!e
2s2

2k2/22e2s3
2k2/2, ~19!

with s151.128,s252.82,s355.451,w150.4. This peaks
at wave numberk52p35/100 (Fp50.339) and has a sig
nificant inverted mode atk52p315/100 (F3p520.186).
The reasons for building this kernel are detailed in Sec. IV
is the simplest biologically meaningful kernel that has app
ciable negativeF j .

C. Traveling rolls — the jp-j3p-j5p system

The modes comprising thejp-j3p-j5p representation
form three resonant interacting sets,I I5$jp ,jp ,jp ,j3p* %,
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FIG. 4. Traveling solutions to the field~1! in 1D: Left: Space-time plot with time increasing vertically downwards shows evolution f
random initial conditions (61024) through a transient state to the stable traveling state after'200 sec. Key amplitudes~center! and phases
~right! show principal modeAp5A5 winning the competition overA6 ~and other modes! at the onset of traveling. The third harmon
A15 decays initially until its phase clicks into resonance withf5 whenceA15 is driven byA5 and rises. Nonresonant modes, e.g.,A10 and
A0 decay to noise levels. Mode indices, used as labels, are wave numbers3100/2p.
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I II5$jp ,jp ,j3p ,j5p* %, I III5$jp ,j3p* ,j3p* ,j5p%, which to-
gether with cross- and self-damping terms lead to
dimension-5 system

j̇p5spjp2gFp@
3
4 j3p

2 j5p* 1 3
4 j3pjp* jp*1 3

2 j5pjp* j3p*

1 3
4 jpujpu21

3
2 jpuj3pu21

3
2 jpuj5pu2#, ~20!

j̇3p5s3pj3p2gF3p@
1
4 jpjpjp1

3
2 jpj5pj3p* 1 3

4 j5pjp* jp*

1 3
2 j3pujpu21

3
4 j3puj3pu21

3
2 j3puj5pu2#,

j̇5p5s5pj5p2gF5p@
3
4 jp

2j3p1
3
4 j3p

2 jp*1 3
2 j5pujpu2

1 3
2 j5puj3pu21

3
4 j5puj5pu2#.
b
s

e

This enhanced system has been studied numerically with
continuation softwareLOCBIF @14#. Solution branches aroun
the standing-traveling bifurcationB retain their topology, but
the positions ofB andD are shifted. Agreement with field
experiments is now better than 1%, e.g., fork50.134422,
Ap(field)50.650, Ap(AE’s)50.649, and ḟ5(field)52.29
31022, ḟ5(AE’s)52.2331022 rad/s, so Eq.~20! may be
safely used to predict parameters for traveling patterns.

We now turn to the question of the existence of traveli
solutions to this system, in particular we deduce conditio
on the Fourier coefficientsFp ,F3p ,F5p . The strategy to be
presented will be generalized in Sec. III to 2D patterns co
prising M modes. First the phase equations for theḟ j are
extracted from the complex mode equations, multiplied
Aj
2, and written in matrix form using the 1D traveling wav

condition ḟ j5ckj to generate the right-hand side:
F 3
4Ap

3A3p

2 1
4Ap

3A3p

0

3
2Ap

2A3pA5p

3
4Ap

2A3pA5p

2 3
4Ap

2A3pA5p

3
4A3p

2 A5pAp

2 3
2A3p

2 A5pAp

3
4A3p

2 A5pAp

G F sin~f3p23fp!

sin~f5p2f3p22fp!

sin~2f3p2f5p2fp!
G5cF kpAp

2

Fp

k3pA3p
2

F3p

k5pA5p
2

F5p

G . ~21!
e
Note that theqth column in thisphase matrixcontains terms
generated by theqth interaction setI q , and thej th row con-
tains terms in thej th phase equation intoḟ j . Clearly the
phase matrix has rank equal to 2 reflecting the neutral sta
ity of translation on the line: multiplying each row by it
il-

wave numberkj , writing knp5nkp and adding produces th
null row. Then the right-hand side sums to

kp
2Ap

2

Fp
1
k3p
2 A3p

2

F3p
1
k5p
2 A5p

2

F5p
50. ~22!
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This is the condition on theF j ’s for the existence of travel
ing pattern solutions and extends the result~6! obtained
above. It may be formulated asFpF3pF5p,0 and requires
the existence of an odd number of inverted modes. It is
portant to note that the addition of the fifth harmonic do
not cause phaselocking thus stopping the traveling; indeed
may induce it. Phase locking results when the rank d
ciency of the phase matrix is removed by an additional
teraction set that shares the same modes as an existing
action set. Such sets are produced byaliasing in a spatially
discretized system@15#.

Asymmetric standing solutions to Eq.~20! have also been
found usingLOCBIF when FpF3pF5p.0. Here the differ-
encesfnp2nfpÞnp but ḟnp50, so that a standing bu
asymmetric pattern is produced. All such patterns fou
were unstable.

III. EXISTENCE OF TRAVELING ROLLS

A. General conditions on theF j

The above result~22! can be extended to patterns consi
ing of an arbitrary number of modes in 1D or 2D. Consid
N interaction sets involving a total ofM modes, thenM
equations of the form( jk j50 can be written. But since~in
2D! all vectors can be expressed as a sum of two basis p
cipal wave vectorskp andkq , the system ofM equations has
rankM22. There are therefore two degrees of freedom
phase variables that correspond to unconstrained position
or else direction of motion, of the pattern in the plane. Co
sider two general cubic interaction setsI B5$j j* ,jk ,j l ,jm%
and I C5$j l* ,jm ,jm ,jn%. Set I B generates the following
contributions to the phase equations:

ḟ j52ajBF j

AkAlAm

Aj
sin~f j2fk2f l2fm!,

ḟk5akBFk

AjAlAm

Ak
sin~f j2fk2f l2fm!,

A5A. ~23!

CoefficientsajB enumerate terms that are generated when
series~2! is substituted into the field~1!, e.g., a contribution
to ajB is made when the selection integral

j j* jkj ljmE e2 i ~2k j1kk1kl1km!•xdxÞ0, ~24!

i.e., when2k j1kk1k l1km50. Multiplying the j th equa-
tion ~23! by the associatedAj

2 transforms each term to
common amplitude factorAjAkAlAm5PAB with common
phase sumf j2fk2f l2fm5((fB). Then Eq. ~23! be-
comes

Aj
2ḟ j52ajBF j) ABsin( ~fB!,

Ak
2ḟk5akBFk) ABsin( ~fB!, ~25!

A5A.
-
s

-
-
ter-

d

-
r

n-

n
g,
-

e

Using the condition on traveling wavesḟ j5c•k j on the left-
hand side, the system ofM phase equations can be written
concise matrix form, here with the addition of terms from t
second interaction setI C ,

3
2ajB

akB

alB 2alC

amB amC

anC
4 F ) ABsinS (fBD

) ACsinS (fCD G53
c•k jAj

2

F j

c•kkAk
2

Fk

c•k lAl
2

Fl

c•kmAm
2

Fm

c•knAn
2

Fn

4 .
~26!

Each column of the phase matrix contains terms gener
by a single interaction set. Each row contains a phase e
tion into one mode. The coefficientsajQ within each inter-
action set turn out to be proportional to the number of tim
mode j j appears within that set. For example, inI C
5$j l* ,jm ,jm ,jn% we havealC521, amC52, andanC51.
These coefficients are in turn proportional to the coefficie
of the wave vectors in the selection integral sum. ForI C this
is 2k l12km1kn50. The result of all this is that since th
wave vectors in each interaction set the sum to zero, mu
plication of each rowj in Eq. ~26! by the corresponding
wave vectork j and summation over all rows will genera
the null row. The right-hand side of Eq.~26! then also sums
to zero to give

(
jP~BøCø••• !

k j~c•k j !Aj
2

F j
50. ~27!

It is easy to show that when wave velocityc lies symmetrical
with respect to the wave vectors, then this sum becomes

(
jP~BøCø••• !

~c•k j !
2Aj

2

F j
50, ~28!

where the sign of each term is clearly the sign of the ass
atedF j . This is the general condition for the existence
traveling patterns in a 2D neural field with pure-C nonlinear-
ity, and implies that there is at least one inverted modeF j
,0.

Application of Eq.~28! to the 2D pattern in Fig. 1~with
spectrum in Fig. 5!, using the symmetryF (22,1)5F (22,21) ,
etc., results in

A~22,1!
2

F ~22,1!
12

A~0,2!
2

F ~0,2!
19

A~22,23!
2

F ~22,23!
14

A~24,22!
2

F ~24,22!
18

A~0,4!
2

F ~0,4!

181
A~2,9!
2

F ~2,9!
50, ~29!

which is satisfied sinceF (2,9),0.
The existence conditions~6!, ~22!, and ~28! partition

modeenergy(Aj
2) between modes. The total energy in th
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normal modes equals that in the~few! inverted modes. A
typical 2D pattern with a large spectral dimension will us
ally contain just a few inverted modes whose energy w
then be relatively large. We can think of this energy
‘‘driving’’ the traveling pattern. This is the case for Fig.
where the inverted modesF (2,9),0 andF (22,9),0 contain
abnormally large amounts of energy in their largeAj values,
as clear from the spectrum Fig. 5.

B. k22k traveling patterns with pure-C nonlinearity

The above results will now be used to show the existe
of k22k traveling patterns in a neural field lacking quadra
nonlinear terms, but with pure-C nonlinearity. The quadratic
nonlinearity is usually invoked to support thek22k resonant
interaction@7#, but this is not in general necessary; we ha
previously shown that the dc or zero mode can activ
couple to mediate an effective quadratic interaction in
case of standing patterns@16#. Here we shall show how this
dc-mediated quadratic interaction can also supportk22k
traveling patterns. Interactions between the principal m
jp , its harmonicj2p , and the dc modej0 are described by
the amplitude equations

j̇05s0j02gF0@
3
4 jpjpj2p* 1 3

4 j2pjp* jp*1 3
2 j0ujpu2

1 3
2 j0uj2pu21

1
4 j0

3#,

j̇p5spjp2gFp@
3
2 j2pj0jp*1 3

4 jpujpu21
3
2 jpuj2pu21

3
4 jpj0

2#,
~30!

j̇2p5s2pj2p2gF2p@
3
4 jpjpj01

3
2 j2pujpu21

3
4 j2puj2pu2

1 3
4 j2pj0

2#,

which apart from self- and cross-damping terms contain
interaction set$j0 ,j2p* ,jp ,jp% where j0 is of course real.
The wave vector sumk012kp2k2p52kp2k2p50 since
k050. Applying Eq.~27! to this system gives

FIG. 5. Fourier spectrum of pattern in Fig. 1. Circle diamet
indicate the relative sizes of the modesj (u,v) constituting the pat-
tern. Zero frequency is in the center, surrounded by strong princ
modes. Arrows show modes in the interaction s
$j (2,9)* ,j (22,21) ,j (0,24) ,j (0,24)% which drive the traveling pattern
These clearly contain abnormally high energy.
-
l
s

e

e
y
e

e

e

02A0
2

F0
1
12Ap

2

Fp
1
22A2p

2

F2p
50 ~31!

so that the dc mode drops out andAp
2F2p524A2p

2 Fp . The
condition for the existence of traveling patterns is th
FpF2p,0 identical to that noted in@7# for the quadratic
nonlinearity. Note from Eq.~31! that even though the dc
mode is involved in the traveling pattern and contains
ergy, it does not share in the energy partitioning. This
consistent with its role as catalyst. Also, a sole inverted
modeF0,0 clearly cannot initiate traveling patterns.

IV. DISCUSSION

The conditions necessary for the existence of travel
patterns in a pure-C field have been deduced above in t
spectral domain. Here we consider their implications for
field in physical space, in particular for the allowed fie
structures, which are able to support traveling patterns. T
condition P jF j,0 in the above analysis actually has tw
implications: firstly, that an inverted modeF j,0 exists and,
secondly, that the Fourier coefficientsF j actually appearas
factors of each nonlinear term in thej j amplitude equation;
only then is the above analysis valid.

The first implication specifies the form of the connecti
kernel A. In engineering, negative Fourier coefficients a
usually encountered as the result of truncation of the ke
extent in space. Since this may not have any biological
evance our kernels do not rely on spatial truncation. Inste
we constructed the simplest biologically meaningful kern
that generated significant inverted mode Fourier coefficie
while not depending on spatial truncation. This was do
using a weighted combination of three Gaussians, comp
ing a small central inhibitory region surrounded by a larg
excitory region in turn surrounded by a larger inhibitory r
gion Eq.~19!. This can be thought of as a classical ‘‘cent
surround’’ kernel with an additional smaller inhibitor
nucleus, or else as a concatenation of two difference
Gaussian kernels.

The second implication of our analysis, that the Four
coefficientsF j actually appear as a factor in each nonline
term in thej j equations, translates directly into conditions
thestructureof the field in physical space. For example, o
analysis of the above field,

ut52ku1A^ f ~u!, ~32!

generates amplitude equations of the form

j̇ j5~aF j2k!j j1F j@bjkj l2gjkj ljm#, ~33!

where theF j do appear in each nonlinear term, so that t
field ~32! can support traveling patterns. But our analy
applied to fields with structure

ut5 f ~u!1A^u ~34!

generates amplitude equations of the form

j̇ j5~aF j2k!j j1bjkj l2gjkj ljm , ~35!
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where theF j do not appear in the nonlinear terms. This fie
will not support inverted-mode generated traveling patter
Note that the Swift Hohenberg equation is of the latter ty
and so will not support traveling Turing patterns. The oth
important class of field that does have the correct structur
reaction-diffusion systems

ut5f~u!1D¹2u, ~36!

which generate amplitude equations of the form

j̇ j
~a!5s j

~a!~k!j j
~a!1Qjkl

~abc!~k!jk
~b!j l

~c!

1Cjklm
~abcd!~k!jk

~b!j l
~c!jm

~d! , ~37!

wherea,b,c,d select the vector field components@11#. Here
the interaction coefficientsQjkl

(abc) andCjklm
(abcd) depend on the

mode wave numbers, and may go negative, providing
equivalent condition toP jF j,0. We expect our traveling
patterns to be found in reaction-diffusion systems.

An intriguing and important question naturally arises.
there any biological significance of our results, in particu
the existence of traveling patterns in a random homogene
neural network? Periodic and traveling patterns such as
sect gait, swimming fish, and feeding action in crustace
have indeed been extensively studied, and associated n
circuitry discovered. But these neural circuits are formed
of dedicated ‘‘central pattern generators,’’ small groups
neurons that once initiated by a control signal from the c
tral nervous system drive the motor neurons and attac
muscles. The gastric system of decapod crustaceans@17#
consists of some 30 neurons ‘‘hardwired’’ with specific i
terconnections. Different rhythmic activity is obtained a
cording to levels of chemical neuromodulators. The swi
ming control of the lamprey@18# consists of repeated
segments of hardwired neurons with specific connections
distributed central pattern generator.

These examples contrast markedly with the random
mogeneous connections of our neural field, which lacks
tally specific, dedicated, hardwired connections. There
however, one nervous system that does resemble our n
field. This is the enteric nervous system~ENS! which con-
trols bowel movements. Although the neural circuitry is s
being actively researched, it clearly consists of a network
motor, sensory, and interneurons embedded between the
gitudinal and circular muscles of the bowel. This structu
supports slow, almost sinusoidal, traveling electrical wa
by reflex activity @19,20#. In a series of elegant paper
Miftakhov et al., have modeled the electrophysiological, m
chanical, and pharmacological aspects of the ENS@21,22#.
They model the intestine as a series of repeated functi
modules, with full specification of the mechanical and ele
trophysiological details: a distributed pattern generator.

Our field Eq.~1! provides a different sort of model for th
ENS, at the level of agenericdescription. No electrophysi
ological details are specified; the model provides a ‘‘she
that via its predictions may help guide the search for
anatomical and physiological details. The main prediction
our model is that the most likely neural circuitry contains
distribution of axon or dendrite projections with three ch
acteristic scales. This circuitry could be provided by inters
tial cells. These could generate traveling waves, wh
s.
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would drive the motor neurons of the intestine muscles
secondary prediction concerns theshapeof the observed
waves, which, as a consequence of the phase-driving me
nism, must be slightly anisotropic, not exactly sinusoid
The various operating modes, peristalsis~traveling waves!,
mixing ~standing waves!, and ileus~quiescent state! appear
as branches in our solution diagram.

V. CONCLUSIONS

Observations of traveling Turing patterns in pure-C neu-
ral fields have been described and tools developed to a
their prediction. In particular, the existence conditions
field structure and parameters have been derived for a
eral case, these have been used to find novel dc-catal
k22k patterns. A local bifurcation analysis has been ma
for traveling rolls. These patterns bifurcate by a phase in
bility, which is manifested as a breakdown in the phase lin
ing of fp to f3p by f3p23f35np for standing patterns
the harmonic mode being repelled away in space. This m
then miraculously finds a stable configuration with the pr
cipal mode. The stability originates in interactions betwe
amplitudes and phase, which in effect remove the block
agonal structure from the system Jacobian, loweringsu be-
low zero, and stabilizing the traveling pattern. In short, t
onset of traveling patterns is due to a phase instability, th
stable existence is ensured by nonlinear amplitude-phas
teractions.
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APPENDIX

Numeric experiments on the field~1! were performed by
discretizing the field and integrating the system of ODE
obtained as a function of time. Adaptive Runge-Kutta a
Stiff ~backward differentiation formula! methods were em-
ployed in parallel to obtain checks. The convolutions for t
1D experiments were performed in the Fourier domain, a
a standard fast Fourier transform. This removed any pr
lems associated with aliasing of pattern components. The
experiments were made with direct convolution in the phy
cal space domain. The fundamental pattern frequency
small enough to avoid generation of significant aliasing co
ponents.

Parameters for 2D traveling pattern „Fig. 1…

The difference of Gaussian convolution in 2D was calc
lated as the difference between the field convolved with
separate ‘‘inner’’ and ‘‘outer’’ Gaussian components. Ea
2D Gaussian convolution was performed as the composit
two separated 1D Gaussian convolutions, in thex andy di-
rections. This ‘‘separable’’ convolution technique is ef
cient. Each 1D convolution mask was calculated as
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G~x!5
1

A2ps
e2~x2xc!2/2s2, ~A1!

where the inner and outer width parameters weres i
512.5/&, so512.5. Each kernel was sampled at the poi
up to a distance62s relative to its centerxc . The 2D field
u(x,t) was discretized on 1003100 pixels2. Field param-
eters were;a51, b50, g51.5, k50.018.

Parameters for 1D traveling pattern „Fig. 4…

Here the kernel was defined as a ‘‘tri-Gaussian.’’ This i
weighted sum of three Gaussians, and is computed in
frequency domain as

TG~k!52w1e
2s1

2k2/21~11w1!e
2s2

2k2/22e2s3
2k2/2, ~A2!

where heres151.128,s252.82, s355.451,v150.4, and
a51.0, b50.0, g51.5, k50.134422. The kernel can als
ce

ia

ko

et

eid
s

a
he

be conceived as a weighted difference between two dif
ence of Gaussian kernels. The field was discretized to
points, the pattern had principal wave numberkp5(2p)
35/100.

3. Parameters for dc-mode catalyzed traveling pattern

A representative example can be computed using
weighted combination of a Gaussian function with its seco
and fourth derivatives~G-GD!. In the frequency domain this
is

G-GD~k!510.0@k2~12k2w1!2w2#e
2s2k2/2 ~A3!

with kernel parameterss53.8, v153.6, v250.01 and field
parametersa51.0, b50.0, g51.5, k50.05406. A travel-
ing pattern with wave number (2p)35/100 emerges in a
field of discretization 100 pixels.
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